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Abstract - A two-terminal device can be incorporated 
into FDTD using the Lumped Element FDTD (LE-FDTD) 
formulation, unfortunately, this method is not able to analyze 
accurately the packaging effects of the device. This is 
possible using Lumped Nehvork FDTD (LN-FDTD) - 
however LN-FDTD requires a complicated pre-calculation 
for simple devices such as Schottky or varactor diode. 
Therefore, this paper presents a simple and effective state 
space approach to incorporate device packaging effects into 
FDTD algorithm. The new technique is validated by means 
of experimental measurements of a varactor-tuned patch 
antenna and the agreement behveen the predicted and actual 
responses is shown to be excellent. 

I. INTRODUCTION 

The Finite-Difference-Time-Domain (FDTD) approach 
is well-known and widely-used for the full wave 
electromagnetic analysis of three-dimensional struch~es. 

A simple two-terminal device such as a varactor may be 
included in the FDTD analysis by means of Lumped 
Element FDTD (LE-FDTD) [l]-[2]. However, the 
conventional LE-FDTD method cannot include the 
packaging effects of the: device, such as lead inductance, 
package capacitance and chip resistance. These play an 
important part in the behaviour of the component. 

Such packaging effects may he incorporated by means 
of the Lumped Network FDTD (LN-FDTD) formulation 
[3]-[4]. However, in this contribution, a new and simpler 
technique is demonstrated which combines the LE-FDTD 
method with a State Variable formulation. This new 
method does not require a bilinear transformation 
(Laplace domain to z-domain), which essentially removes 
the pre-computational complication to the method. 

One application of a varactor diode is for hming the 
resonant frequency of a microstrip patch antenna, which 
was first reported by [5]. This method of tuning allows 
the inherently narrowband patch antenna to cover a very 
large bandwidth (typically in excess of 30%) in discrete 
narrowband intervals. The modelling technique proposed 
herein is demonstrated by application to a varactor-tuned 
patch antenna. 
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II. DEVICE MODELUNG IN FDTD 

A. Conventional LE-FDTD 

Consider the Maxwell’s curl H equation in free space, 
appropriate for updating the electric field: 

The LE-FDTD method includes a lumped circuit 
component by means of a lumped element current density 
JL: 

B. Extended Methodology 

For the lumped current density to represent an entire 
lumped network, there are three main steps to be 
followed: 

1) 

2) 

3) 

Describe the network circuit using the State 
Variable formulation in the Laplace domain. 
Transform the State Variable formulation from 
the Laplace domain to the time domain using the 
Trapezoidal formula. 
Representing the lumped current density by 
utilizing the current through the input. 

Firstly, the state variables are identified with the energy 
storage elements in the circuit (current in the case of an 
inductor, voltage for a capacitor). Solving the network 
circuit using loop analysis eventually yields the state 
variable form. The network is then described by the 
following system of simple, first order equations: 

sCX=-GX+W (4) 

Here, X is the state variable vector (a combination of 
voltages and currents in the circuit) and W is the input 
vector, in this case, the potential difference across the 
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device. C represents the capacitance or inductance and G 
represents the resistance or conductance used in the 
circuit. 

In order to couple the state variable formulation and 
FDTD algorithm, a transformation of (4) from the Laplace 
domain to the time domain is essential - if n is the current 
iteration and the prime indicates differentiation with 
respect to time: 

Cx’, = -Gr, +w, (5) 

To calculate x’, the causal Forward Euler formulation 
or the non-causal Backward Euler and Trapezoidal 
formulation may be used. Although the Trapezoidal 
formulation yields second-order accuracy, it is difficult to 
couple into the FDTD as it requires prior knowledge of 
next step electric field, w.,,. As a result, to predict the 
future information needed in the Trapezoidal formulation, 
the Forward Euler formulation has to be used as a 
predictor. Later, the predicted information will be passed 
to the corredor, which uses the Trapezoidal formulation: 

So, employing the Forward Euler form to approximate 
the derivative: 

(6) 

yields: 

Cx,,, = (C - AtG)x, + Anr, (7) 

One of the twins in x.+, will be the current supplied to 
the whole network, which can be used to update the 
electric field in (3). A semi-implicit method [2] is used to 
discretize the current term .I at nilf2. The result will be 
the predicted next step electric field, which is w&,: 

Now using the Trapezoidal form: 

x’ n+l fX’” = x,+1 --x, 
2 At 

(5) then yields: 

(8) 

(9) 

(10) 

If the nehvork is linear, this set of simultaneous 
equations may be solved by any standard technique. If the 
network is non-linear, the simultaneous Newton-Raphson 
Iteration method may be used. 

Again, one of the terms in x,! is the current supplied to 
the whole network, which is used to correct the previous 
electric field to give a 2”d-order accurate result: 

Normally, the time step At chosen to satisfy Courant 
condition is smaller than the time step required for the 
microwave network circuit. Thus the state variable 
formulation is stable. 

III. PACKAGED DEVICE MODEL 

The equivalent circuit diagram of a varactor, including 
the parasitic components associated with the package, is 
shown in Fig. 1. 

I Varactor 
Fig. 1. Varactor equivalent circuit, including packaging 

The junction capacitance Cj of the varactor exhibits a 
nonlinearity according to [6]: 

c,b”ar)=b~~Rc;“a,r (12) 

- vw, is the voltage across the varactor, C,n is the static 
capacitance, V, is the applied reverse bias, y is the 
exponent of the C-V relation and ti is the built-in 

potential. 
To include the packaging effects, the state variable 

formulation described in the previous section is employed. 
The varactor is orientated in the r-direction and input 
voltage (vi”) is AzEz, Three state variables x are identified 
with the energy storage in the lead inductance (L,), 
package capacitance(C,) and junction capacitance CC,): 

x, = i, (13a) 

XI = vc U3b) 

9 = ““(II (139 
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TABLE 1 

Using simple circuit analysis, the relationships between 
these state variables can be shown as: 

FDTD in the place of Jr ( J, = i, /AxAy ) in equation (11) 

using the semi-implicit method. 
Experience with this algorithm has shown that it is 

stable with a time step given by the standard Courant 
condition for the FDTD method. 

Using (7), the Forward Euler formulation yields a 
prediction Y”+’ 

IV. RESULT AND DISCUSSION 

A varactor-tuned patch antenna was conshucted. The 
dimensions of the patch were 26x 17mm on RT/Duroid 
6010 substrate of uermittivitv E .=10.2 and a thickness of 

I 

r, A! 0 

-A! C&,-A!/& -&i/ls, 

0 -4‘3 4&v'/% 

Using (lo), the Trapezoidal 
corrector for $+I: 

[ r, b/‘/2 0 

O.Smm. Tuning was accomplished by means of a silicon 
abrupt junction varactor (SMVl405-079 from Alpha 

(15) Industries) - from the manufacturer’s data sheet, 
C,,=2.57pF, y=O.39, ~=0.68 for the varactor and 
L,=0.7nH, C,=O.OSpF, R,=0.8Qfor the package. The patch 
was pin-fed and the varactor was connected between the 
edge of the patch and ground, by means of a via shown in 
-. ^ 

formulation gives a 
r1g. L. 

(16) 

(8) being used to find EF1lpRE. The Newton-Raphson 

numerical method is used to solve the implicit relationship 
for x, in (16). x,=i, represents the current through the 
whole packaged device and thus this may be inserted into 

Fig 2. Varactor-hmed patch antenna 

As shown in Table 1, over a range of reverse bias 
voltages from 0 to 3OV, the method presented in section 2 
is able to track the operating frequency of the patch with a 
typical accuracy of 5MHz (0.28%). Furthermore, the 
shape of the measured return loss in Fig. 3 is closely 
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matched over the full range of bias conditions and over 
the full band of interest. 

-3 P’ j ’ 600 1650 1700 1750 1800 1850 
Frequency(MHz) 

Fig3. Measured and Predicted SI 1 of the microstip tuned 
patch a.ntenna. 

Importantly, if the packaging effects are neglected the 
discrepancy between FDTD and measurement increases 
considerably, for example an error of 35MHz (2.0%) 
behveen the measured and non-packaged varactor occurs 
at OV bias. This demonstrates the importance of including 
the package effects in the FDTD model. 

V. CONCLUSIONS 

A simple technique that extends the original LE-FDTD 
method to include packaging effects of a device has been 
presented. The technique introduces minimal 
computational overheads, and has no observed effect on 
algorithm stability. 

This new method has been validated by considering a 
varactor-tuned patch antenna. The numerical and 
experimental results for this antenna are shown to agree 
with pleasing accuracy over a wide range of bias voltages. 
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